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INTRODUCTION: MOTIVATIONS

- Applications of DNN models on edge devices
- Autonomous driving
- Real-time healthcare devices
- Speech recognition
- efc

[1] https://on-device-ai.com/
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INTRODUCTION: MOTIVATIONS

- The keys to effective deployment of DNN models on edge devices:
1. Low inference latency

2. Small memory footprint

3. High accuracy



INTRODUCTION: MOTIVATIONS

- The keys to effective deployment of DNN models on edge devices:

1. Low inference latency
\ Model Efficiency

2. Small memory footprint

Quantization
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Quantization
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FP32 INT8 [2]

[2] https://developer.nvidia.com/blog/achieving-fp32-accuracy-for-int8-inference-using-quantization-aware-training-with-tensorrt/
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RELATED WORK: QUANTIZATION

- Represents the weights and activations of DNN models using fewer bits (e.g. INT8)
than the standard FP32 representation without sacrificing much accuracy.

- Reduce memory footprint
- Lower inference latency

Categories:
According to different bit-width allocation strategies:

- Homogeneous Quantization
Few-Bit Mixed-Precision (FB-MP) Quantization
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INTRODUCTION: MOTIVATIONS
- The keys to effective deployment of DNN models on edge devices:
3. High accuracy
™
£ X “’a tecture Search (NAS)
Q
%- 2 Sample architecture from the search space
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Harfdacrafted Architectures [3]
Sample-based NAS Weight-sharing Block-wise NAS
NAS



EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

RELATED WORK: SAMPLE-BASED NAS

- Sample-based NAS

- Sample a large number of architectures from the search space and then train each of them from
scratch to validate their performance.

- Scaling to compute-intensive tasks is intractable as the training cost will explode.

Search Space Sample architecture from the search space

Search l Performance
Strategy | 4 Estimation

[] Candidate
[ candidate

B candidate
operation 3

Estimate performance of the architecture
[3]



RELATED WORK: WEIGHT-SHARING NAS

- Weight-sharing NAS (e.g., FairNAS[4] and SPOSI[5])
- A supernet encompassing all candidate architectures. Only supernet is trained, with candidate subnets

sharing weights.

- Evaluate and rank subnet performance for subsequent search.

- Promising results have been shown in small search spaces.
- Subnets can be trained insufficiently in a large search space, leading to incorrect ranking and hence,

sub-optimal solutions. [4]

Evaluation Loss #params

i é Supernet \ =
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Search Space i i
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RELATED WORK: BLOCK-WISE NAS

- Block-wise NAS

- Divide the supernet into several blocks in term of depth and optimize these blocks in isolation.
N =Ny = Nipg o N o N €Y

TU/e 55

- The size of search space in each block is exponentially reduced following Eqn. (2), where C denotes number of candidate

operations in each layer, d. denotes the depth of i-th block.

Reduction rate = Cdl/(l—[ c4) 2)

- All candidates in every block are well optimized, thus i |mprovmg the ranking accuracy.

- Fails to address quantization Teacher teacher feature map teacher

input feature map

ql block 3

image

_<|b/ock 4 .[block 5

student
feature

input

image maps

input
image
input
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image

O(,dndlddle Operations D Cells OLO» Functions — Data flow

--+ Randomly Sampled Paths
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- The keys to effective deployment of DNN models on edge devices:
1. Low inference latency
2. Small memory footprint
3. High accuracy
The best full-precision architecture is not necessarily the optimal one after quantization. [9]
Neural Architecture Search (NAS) é Quantization
0.34 . 5.64 64 . 217
Search Space Sample architecture from the search space
-[ SStf:tr:;y ]:[ P(Ee;z?r;r:gzrc‘e } 1.12 2.7 0.9 - 76 19 21
uantization
Eg::j:ﬂ::zg:gz:; Estimate performance of the architecture . 0.68 1.43 . . 81 99
[ Candidate Block 3
[3] FP32 INT8 2]

[ ]
Lo |

12

uuuuuuuu
uuuuuuuuu



TU/e
INTRODUCTION: MOTIVATIONS
- The keys to effective deployment of DNN models on edge devices:
1. Low inference latency
2. Small memory footprint
3. High accuracy
Joint
Neural Architecture Search (NAS) H Quantization
0.34 . 5.64 64 - 217
Search Space Sample architecture from the search space
— (s |2 e | « Y w— - R
Quantization
Eg::j:ﬂ::zg:gz:; Estimate performance of the architecture . 0.68 1.43 . 81 99
[ Candidate Block 3
[3] FP32 INT8 [2]
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RELATED WORK: JOINT QUANTIZATION AND NEURAL ARCHITECTURE SEARCH

- Common approaches such as APQ [9] and QFA [10]

Arch Embedding Arch + Q Embedding

- Once-for-all supernet-based NAS which builds an accuracy predictor for quantized performance  ©
- Requires several thousand GPU hours for training
- Fails to scale towards large-scale tasks

0 With block-wise NAS, the total search cost can potentially be reduced to tens of GPU
hours on large-scale tasks, e.g., semantic segmentation.
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CONTRIBUTIONS

1. Quantization-Aware Block-Wise NAS (QA-BWNAS)
- A simple yet effective approach

2. Automate the design of highly accurate and efficient homogeneous (e.g., INT8) and
FB-MP models.

3. Suitable for scaling QA-NAS up to large-scale and compute-intensive tasks.
4. Optimization on search strategy, reducing the search cost from hours to seconds.
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OVERVIEW

- Quantization-Aware Block-wise NAS
(Homogeneous)
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METHOD: BLOCK-WISE SUPERNET TRAINING VIA KNOWLEDGE DISTILLATION

- Feature-based knowledge distillation

« Blocks in the student supernet are trained in isolation
+ Input: the previous feature map of a trained teacher model
+ Knowledge Distillation (KD) loss: noise-to-signal-power ratio (NSR)

= NSR loss of each subnet can be evaluated as a proxy of ground truth performance.

input
image

Teacher Network

—> stem > block 1

Teacher

5 i stem | > block 1

block 2

Feature Map

- block N Decoder
;\ Y
KDL (KDL)
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A —> block N — Decoder
Student | | @ -
Feature Map

@ Block-wise Training
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METHOD: NSR LUT POPULATION (HOMOGENEOUS)

« How to efficiently introduce quantization in
block-wise NAS?

- Quantize each subnet from the FP32 supernet

L:NS'R(ynayn — Z HyNC yn(H (1)

- Evaluate quantized subnets to populate NSR LUTs

Homogeneous 8-bit block-wise losses
FP32 supernet W Quantlzatlon Evaluate per subnet
—» Quantized 6-bit >
Q00 Performance4 Mrelele LUTs
block-wise R

subnets

(trained)

@ LUTs Population
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METHOD: OPTIMIZATION ON SEARCH STRATEGY

- Search Strategy
- DNA’s traversal search [6]:
« Subtly visits all possible candidates in the search space

« The search can take approximately 1 hour for one optimal model
- Our optimization
- HW-related secondary objectives

- model size
- inference latency

- Searches only within Pareto optimal candidates in each block
» €.9., Reduces #candidates from 1296 to 17 (4-layer block)

« Search cost: from several hours to a few seconds

block NSR

TU/e &
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METHOD: MODEL RETRAINING

- Model Retraining

- Retrain the searched architecture to convergence.

- Quantize the trained model to obtain its low-precision performance.

HW Feedback
* model size
« latency

Derive Block-wise Pareto
Optimal Solutions

LUTs ’

Reduced LUTs

\ 4

Search for Optimal
Quantized Architecture
with HW-constraints

@ Search

44 Model Retraining ‘

Quantize with
Homogeneous Quantization
Policy
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IMPLEMENTATION DETAILS

- Dataset: Cityscapes

- Teacher model: DeeplLabv3 [12]
- SOTA model, the encoder is MobileNet V2. TABLE 1

SUPERNET DESIGN AND BLOCK DETAILS. "L#” AND "CH#” REPRESENT
THE NUMBER OF LAYERS AND CHANNELS OF EACH BLOCK.

. [ model | teacher | student supernct |
- Searchable architectures R e R
- MBConv block 5w =
- Kernel size: {3, 5, 7} 3 4 %
. . 5 1 3 160 3 160
- Expansion ratios: {3, 6} 6 T [ 1 320 [ 1 320
- Bit widths

- Homogeneous quantization: {8}

[ ]
Lo |
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RESULTS: HOMOGENEOUS QUANTIZATION (INT8 & MODEL SIZE)

* Results:

- QA-BWNAS (homogeneous) yields a Pareto
front of solutions, which substantially outperform
the teacher network.

712
71 = |
—. 70 : }
S 69
o ’ | |
67
‘ ----- Teacher Network (FP32)
66 | A Teacher Network (INT8)
\ QA-BWNAS (INT8)

2.2 2.4 2.6 2.8 3.0
Model Size [MB]
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RESULTS: HOMOGENEOUS QUANTIZATION (INT8 & MODEL SIZE)

* Results:

- QA-BWNAS (homogeneous) yields a Pareto
front of solutions, which substantially outperform
the teacher network.

72

- 4.2 pp. higher mloU 7

70

T—T —1

mloU [%]

*

----- Teacher Network (FP32) |
A Teacher Network (INT8)

=== QA-BWNAS (INT8)

2.2

2.4

2.6 2.8 3.0
Model Size [MB]
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RESULTS: HOMOGENEOUS QUANTIZATION (INT8 & MODEL SIZE)

* Results:

- QA-BWNAS (homogeneous) yields a Pareto
front of solutions, which substantially outperform

the teacher network. .

- 4.2 pp. higher mloU 7
- 25% smaller model size 70

o

mloU [%]

e m

25% reduction in model size | ]
........ network (FP32)

A Teacher Network (INT8)

=== QA-BWNAS (INT8)

2.2 2.4 2.6 2.8 3.0
Model Size [MB]
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RESULTS: HOMOGENEOUS QUANTIZATION (INT8 & MODEL SIZE)
72
T
- Results: 7 ~— —
- Two SOTA weight-sharing NAS methods 70 |
- FairNAS = 6 .
% ltl_
- SPOS € 68 *U A
. e Teacher Network (FP32)
- Outperform them with little extra compute cost. & | A Teacher Network (INT8)
J = SPOS (INT8)
66 FairNAS (INT8)
*‘ == QA-BWNAS (INT8)
65
2.4 2.6 2.8 3.0

Model Size [MB]

Compute Effort (GPU hours)

LUT
Population
14.87

Method Train
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Search

0
1.5
Ji:D

GPU: NVIDIA RTX8000
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RESULTS: HOMOGENEOUS QUANTIZATION (INT8 & INFERENCE LATENCY)

- Results:
- A Pareto front of solutions on i.MX8M Plus.

- Reduction in inference latency.

72 o——9©
- 17.6% lower o [
g 69 J(‘ 17.6% reduction in latency
" - — (}*—_ b BB ——"|
- Findings: chs | A
67 o—
- Accommodate various secondary objectives. S A s Teacher Network (FP32)
65 1o A Teacher Network (INT8)
s —— QA-BWNAS (INT8)
T 0.80 0.85 0.90 0.95 1.00 1.05 1.10

Inference Latency [normalized to teacher]
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OVERVIEW

- Quantization-Aware Block-wise NAS
(FB-MP)

27
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METHOD: QUANTIZATION-AWARE BLOCK-WISE NAS (FB-MP)

- Layers/Blocks in DNNs have different sensitivities to quantization. [7]

0 Few-Bit Mixed-Precision (FB-MP) quantization
- Improve model efficiency without causing considerable performance degradation.

- / 32-bit conv
A .

Y 8-bit conv\

o 2

bit conv -
7 Layer-(i+1) [1 1 ]

Layer-(i)

[7] A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney, and K. Keutzer, “A survey of quantization methods for efficient neural network inference,” 2021.

[11] B. Wu, et al., Mixed Precision Quantization of ConvNets via Differentiable Neural Architecture Search, ICLR 2019.
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METHOD: QUANTIZATION-AWARE BLOCK-WISE NAS (FB-MP)

QA-BWNAS (FB-MP):

Quantize each subnet with different bit widths

Concatenate NSR LUTs for searching

Retrain the found model and quantize it
with searched FB-MP policy

FP32 supernet

(trained)
. 4

LUTs

Homogeneous
Quantization Evaluate
Quantized
Performang
block-wise
subnets
—>

8-bit
6-bit

)

4-bit

(=)

HW Feedback

l- model size

Derive Block-wise Pareto
Optimal Solutions

.

A

A

Reduced LUTs

Search for Optimal
Quantized Architecture
with HW-constraints

~
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block-wise losses
per subnet

LUTs

LUTs Population

—>L Model Retraining

Quantize with searched FB-
MP Quantization Policy

l

@ Search

T

@ Retraining

y
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IMPLEMENTATION DETAILS

- Dataset: Cityscapes

- Teacher model: DeeplLabv3 [12]

- SOTA model, the encoder is MobileNet V2.

- Searchable architectures
- MBConv block
- Kernel size: {3, 5, 7}
- Expansion ratios: {3, 6}

- Searchable bit-widths
- FB-MP quantization: {4, 6, 8}

IABLE |

SUPERNET DESIGN AND BLOCK DETAILS. "L#” AND "CH#” REPRESENT

THE NUMBER OF LAYERS AND CHANNELS OF EACH BLOCK.

[ model | teacher | student supernct |
block  stride | L# CH# | L# CH#t
1 2 2 24 3 24
2 2 3 32 3 32
3 1 4 64 4 64
4 1 3 96 4 96
5 1 3 160 3 160
6 1 1 320 1 320

30
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RESULTS: FB-MP QUANTIZATION (MODEL SIZE)

* Results:

- Outperform INT8 solutions in terms of mloU and

model size.

mloU [%]
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A Teacher Network (INT8)
=== QA-BWNAS (INT8)
= QA-BWNAS (FB-MP)

1.8

2.0 2.2 2.4
Model Size [MB]

2.6 2.8
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RESULTS: FB-MP QUANTIZATION (MODEL SIZE)

* Results:

- Outperform INT8 solutions in terms of mloU and

model size.
- Relatively minor increase in compute efforts.

Compute Effort (GPU hours)

Method Train LUT. Search
Population
QA-BWNAS (FP-MP)x _ 4.05 4461 14x Nl
QA-BWNAS (FP-MP) 4.05 44.61 0
QA-BWNAS (INT8) 4.05 14.87 0

GPU: NVIDIA RTX8000
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66

64

62

60
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A Teacher Network (INT8)
=== QA-BWNAS (INT8)
= QA-BWNAS (FB-MP)

1.8 2.0 2.2 2.4 2.6 2.8 3.0
Model Size [MB]
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RESULTS: FB-MP QUANTIZATION (MODEL SIZE)

* Results:

- Outperform INT8 solutions in terms of mloU and
model size.

- Relatively minor increase in compute efforts.

- 33% smaller model size
« 8 pp. more reduction

72 ?—5
AL
0 33% reduction in model size
=T el e B .
e — T A
Compute Effort (GPU hours) S ey e
Method Train LUT. Search 2 o’
Population o
QA-BWNAS (FP-MP)x __ 4.05 4461 14xN g I
QA-BWNAS (FP-MP)  4.05 44.61 0 -
A Teacher Network (INT8)
QA-BWNAS (INT8)  4.05 14.87 0
—— QA-BWNAS (INT8)
GPU: NVIDIA RTX8000 60 —— QA-BWNAS (FB-MP)

1.8 2.0 2.2 2.4 2.6 2.8 3.0
Model Size [MB]
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CONCLUSIONS

1. QA-BWNAS: A simple yet effective approach.

2. Automate the design of highly accurate and efficient homogeneous (e.g., INT8) and
FB-MP models.

3. Suitable for scaling QA-NAS up to large-scale and compute-intensive tasks.
4. Optimization on search strategy, reducing the search cost from hours to seconds.
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METHOD: HOMOGENEOUS QUANTIZATION (INFERENCE LATENCY)

Correlation between
madel size and inference latency
]

- Challenge:
- Low correlation
- The begt mo.del under model size is likely to be 'al_tﬁf;gy 4{ Model Retraining ’
sub-optimal in terms of inference latency. l
How to introduce latency awareness into "~ Derive Blook-wise paretol O e B
block-wise NAS? LuTs omalSaens oo
! Reduced LUTs l
Search for Optimal
. Solution: i, — G5
Search @ Retraining

er
p@
N
S

block lat
o

0 Estimate by block latency addition
- Populate LUTs for quantized subnet latency
- High correlation (Kendall-Tau = 0.96809)

020 022 024 026 028
inference latency (INT8)
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ABLATION STUDY: HOMOGENEOUS LOWER-BIT QUANTIZATION

- Homogeneous QA-BWNAS for lower precision
- INT6

- INT4

Observations.

- Reduce model size while retaining task accuracy.

TU/e
70 "J S
TJ A
65 ‘ s
S
5
2 60
€
------ Teacher Network (FP32)
55 A Teacher Network (INT8)
= QA-BWNAS (INT8, PTQ)
—— QA-BWNAS (INT6, PTQ)
—— QA-BWNAS (INT4, PTQ)
50
1.8 2.0 2.2 2.4 2.6 2.8 3.0
Model Size [MB]
L <9
70
A
— 65 =
&
=
9 60
[ A Teacher Network (INT8)
=== QA-BWNAS (INT8)
55 = QA-BWNAS (INT6)
= QA-BWNAS (INT4)
= QA-BWNAS (FB-MP)
50
1.8

2.0 2.2 2.4 2.6 2.8 3.0
Model Size [MB]
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EVIDENCE OF SUB-OPTIMAL ESTIMATION OF NSR ADDITION

- Limitations of our performance estimation strategy via LUTs:
- Sub-optimal performance estimation. The correlation between NSR sum and final accuracy is

sub-optimal.

For example: T
Green 1: 3.640070 (mloU: 70.66)

Purple 2: 3.6424480245 (mloU: 69.67)
Purple 3: 3.6353230685 (mloU: 68.11)

70

68

mloU [%]

66

Homogeneous INT8 Block-wise NAS on Cityscapes Validation
[Input Resolution: 512x1024]

A Seed Network (INT8)
=== Results from param — based search

0.20 0.22 0.24 0.26
Inference Latency [second]
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EVIDENCE OF SUB-OPTIMAL ESTIMATION OF NSR ADDITION

Homogeneous INT8 Block-wise NAS on Cityscapes Validation
[Input Resolution: 512x1024]

72 r—9

o
70 ®
o
S °
2 68
= A
o
£
66
@
A Seed Network (INT8)
64 === Results from param — based search
o = Results from latency — based search
0.20 0.22 0.24 0.26 0.28

Inference Latency [second]

72
70
2 68
)
o
£
66
64
®
0.20

Homogeneous INT8 Block-wise NAS on Cityscapes Validation

0.22

[Input Resolution: 512x1024]

A Seed Network (INT8)
=== Results from param — based search
== Results from latency — based search

0.24 0.26 0.28
Inference Latency [second]
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FUTURE WORK

0 Direction 1:
- Accuracy predictor for quantized performance prediction

0 Direction 2:
- Validate its generalizability.
- Other large-scale/low-scale tasks
- Other datasets
» Other networks
= Different teacher models

[ )
L |
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MBCONV BLOCKS

Inverted residual block

lu6, Dwise
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QUANTIZATION

B. Quantization

The quantization function typically used to map full-
precision neural weights and activations to a lower precision
is defined as follows [13]:

Q(r) =Int(r/S) - Z (6)

where () is the quantization operator, r is the input tensor
(weight or activation), S is the scaling factor, and Z is an
integer zero point.

The scaling factor S is mainly to divide the range of a given
input tensor 7 into several partitions by:
B—a
26 —1
where [a, 3] denotes the clipping range which is a bounded
range used to clip the input values, b is the target quantization
bit-width.

The process of selecting the clipping range is called cali-
bration. Min-Max is a popular choice to decide the values of
a and 3, where a = r,,in and 8 = 742. In our work, we
apply per-channel Min-Max to choose the clipping range in
the calibration process.

S = (7)

a=-1 0 Sz B =15
«---- “ ' V / -——¢> T
—127 0 —128 0 127

Figure 2: lllustration of symmetric quantization and asymmetric quantization. Symmetric quantization with restricted
range maps real values to [-127, 127], and full range maps to [-128, 127] for 8-bit quantization.

44 hRd



IMPLEMENTATION DETAILS TABLE I

SUPERNET DESIGN AND BLOCK DETAILS. "L#” AND "CH#” REPRESENT
THE NUMBER OF LAYERS AND CHANNELS OF EACH BLOCK.

| model | teacher | student supernet |
o Dataset_' Cityscapes block stride | L# CH# | L# CH#
1 2 2 24 3 24
2 3 32 3 32
3 1 4 64 4 64
4 1 3 96 4 96
- Teacher model: DeeplLabv3 [12] S 18 10l5 I
- SOTA model, the encoder is MobileNet V2.
Retraining hyperparameters
Scheduler Polynomial
- Searchable architectures Batch size 8
- Kernel size of MBConv: {3, 5, 7} Learning rate  0.01
- Expansion rates: {3, 6} Optimizer SGD with momentum = 0.9
Iterations 80K
. . Supernet training hyperparameters
- Searchable bit-widths :
o Scheduler Polynomial
- Homogeneous quantization: {8} Batch size 3
- Mixed-precision quantization: {4, 6, 8} Learning rate  [0.002, 0.005, 0.005, 0.005, 0.005, 0.002]
Optimizer SGD with momentum = 0.9
Iterations [13334, 13334, 13334, 13334, 13334, 13334]
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