R=COGCNI



R=COCNI
Hardware-aware network

compression: From data to silicon

Thomas Preil @
CODAI 2023



Abstract

Deploying Al workload to hardware is a complex and challenging task,
especially for specialized hardware systems that inherently support and
exploit compression techniques. At a certain level of compression,
optimizations at compiler level are not sufficient anymore to maintain task
accuracy. To recover this task accuracy without sacrificing power efficiency, Al
algorithms and hardware have to be co-designed. In this talk, | will present a
holistic view on compression techniques for deep neural networks and their
application in the context of specialized deep learning accelerators.
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Hardware-algorithm co-design
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. . RECOCN|
Compression techniques e

-  Quantization

- Weight sharing

- Knowledge distillation
- Pruning

- Neural architecture search
- Low-rank decomposition

Modelﬁ

Source: [1]
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Hardware-algorithm co-design "=
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QAT vs PTQ
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Quantization-Aware Training vs Post-Training =

Quantization

Method Data Network Optimization Runtime Task accuracy
graph method | Efficiency

Interface to customer Software Application
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Progressive Compression

Motivation:
- Improve accuracy
- Reduce runtime
Hypothesis:

-  The smaller the drops in accuracy
between compression stages, the
better the overall compression result.

Approach:

- Split the compression pipeline into
stages that progressively increase
compression.
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Progressive Compression

Effective Training of Convolutional Neural
Networks with Low-bitwidth Weights and
Activations

Bohan Zhuang, Mingkui Tan, Jing Liu, Linggiao Liu, lan Reid, and Chunhua Shen

Progressive quantization [2]:
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Fig. 3: The progressive training approach on AlexNet*.
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Divide and Conquer: Leveraging Intermediate Feature Representations for
Quantized Training of Neural Networks

Ahmed T. Elthakeb ! Prannoy Pilligundla? Fatemehsadat Mireshghallah 2
Alexander Cloninger> Hadi Esmaeilzadeh 2

Progressive knowledge distillation [3]:

...............................................................................................................................................

T:Trainable F:Freezed =~ Q:Quantized ~ H: High Precision
o Benchmark AlexNet ResNet-18 MobileNet-V?2
Bitwidthh ===+ T MR e e e e e v S e
Partitioning 3 Stages 3 Stages 3 Stages
Method Top-1 Top-5 Top-1 Top-5 Top-1 Top-5
W32/A32 Full Precision 571 802 701 895 718 903
PACT 35,7 - 692 890 614 837
LQ-Nets - - 693 8838 - -
W4/A4 DSQ - - 69.6 - 64.8 -
DoReFa 550 763 689 881 646 85.1
‘DoReFa+DCQ 562 792 699 892 662 873
. Improvement _ 0.89% ¥ 043% T 247% 1
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Progressive PTQ-KD

Methods:

Baseline: . .
Compress and fine-tune full network in a
single stage.

Stage-by-stage approach:
Compress and fine-tune the network
layer by layer.

Results:

The drops in accuracy between stages is
smaller for the stage-by-stage approach.

Although the training time is shorter, a
higher accuracy is achieved.

To further decrease the runtime at the
use of more compute resources stages
can be optimized in parallel.

Normalized accuracy

R=ECOCNI
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SOSP R=COCNI

Published as a conference paper at ICLR 2022

Second-Order Structured Pruning RS POEERCENTISEC SiMokRBinGonal Ebegsian
TIONS BY SECOND-ORDER STRUCTURED PRUNING
Motivation: . » o
- One-shot method %EEEEE e (BCAI)
- using second-order correlations between 71212 R
structures Ingo St
- allows for global optimization T °(BEAD
- of structured pruning .
- qualifying as efficient NAS method.
In contrast to: ; i
- Iterative methods { [
- required because correlations are not considered } {'
- only allow for local optimizations " |
- of oftentimes unstructured pruning : |
- not transferring to real-world applications. i t

to systematically reveal architectural bottlenecks, which we then widen to further
increase the accuracy of the networks.
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Second-Order Structured Pruning - Methods R=COCNI

- Objective: “Select the pruning mask
M to minimize the joint effect on the AMM) := ’L(Q) s E(H\M)|
network loss.”

-  The saliency of structures is

computed by a Taylor expansion in
which the second derivative captures  \o(M) = Z QT& - Z gg“d L(0 T
correlation between structures. s 8 seM df df

- To reduce computational costs the
Hessian-vector product is used to

approximate the Hessian resulting in dL(6 1
a complexity like for first-order A5 (s) o= [l —2 ) ‘ — ’93 (H(Q)Qstruc)‘
methods. do 2
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SOSP applied to ResNet-50 on ImageNet

- Better trade-off between accuracy
and number of parameters with less
complex algorithm than comparable
approaches.

- Works especially well for high pruning
rates.
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How SOSP can be used to find better neural R=CEEN]

architectures

expand-pruning widen-pruning
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Conclusion

Closing the loop for hardware-algorithm co-design allows for rapid
development of end-to-end optimized solutions.

Under the assumption of limited access to data and the training
pipeline, a wide spectrum of PTQ methods is available to compress

neural networks. Methods on the Pareto-front of accuracy and FPS are of
high interest.

Effective methods exist for global pruning that qualify as a replacement
or extension of neural architecture search methods.
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