

Bernhard Vogginger, Florian Kelber, Shambhavi Balamuthu Sampath, Johannes Partzsch, Christian Mayr Chair of Highly-Parallel VLSI Systems and Neuro-Microelectronics

Performance models and energy-optimal scheduling of DNNs on many-core hardware with dynamic power management

CODAI 2022 Workshop

Sponsored by:

Introduction

Challenge:

Real-time analysis of input (e.g. images at 30 fps) on embedded DNN chip with limited power/energy budget

Outline of the presentation

SpiNNaker2 many-core hardware

The SpiNNaker2 Chip Architecture

- Advancement from SpiNNaker 1 chip: "Spiking Neural Network Architecture" by University of Manchester (Prof. Steve Furber)
- 152 processing elements:
 - Arm Cortex M4F core for flexible processing
 - 128 KB SRAM
 - **64 unit MAC array** for DNN inference
- 2GByte LPDDR4 per chip
- Network-on-Chip (NoC) for on-chip comm.
- SpiNNaker router & chip-to-chip links for packetbased communication
- **22FDX** CMOS GLOBALFOUNDRIES (Tape-out 6/2021)

The SpiNNaker2 Processing Element (Jib1 prototype version)

ABB (adaptive body-biasing) IP by Racyics allows operation of core down to 0.45 V

Power management (DVFS):

- Select **from 2 global supply lanes** for core logic: typical range: 0.45 0.6 V
- Select **frequency** per PE typical range: 50 400 MHz
- Switch performance level (supply lane + f_{clk}) within tens of nanoseconds [Hoeppner 2019]

Other power domains are fixed

- Network-on-Chip: 0.6 V, 300 MHz (typical)
- SRAM: 0.8 V, accessed with PE clock

Integrated MAC Accelerator

- 16x4 MAC array per core
- operation modes:
 - matrix multiplication
 - 2D convolution
- ReLU and quantization to 8, 16 or 32 bit
- Combine 2 or 4 MAC units for 8x16 bit or 16bx16b integer operations:
 - Allows to trade-off resolution and throughput (performance)

- Only 7 % of silicon area of PE
- Makes a SpiNNaker2 a competetive DNN inference chip:
 - 4.5 TOPS max throughput
 - 2.1 TOPS/W max energy efficiency

Performance Models

Time and energy model of SpiNNaker2 Machine Learning Accelerator

Measurement on prototype chip

- Prototype chip with 8 PEs (2 QPEs)
- Same Conv2D layer running in the loop on all 8 PEs using the machine learning accelerator
- Measure power for all supply lanes over time

Measurements: Sweep of voltage and frequency

Two performance levels selected for further studies PL 1: VDD_{04} =0.5 V, f_{clk} =320 MHz for least energy **PL 2:** VDD_{04} =0.6 V, f_{clk} =400 MHz for highest speed

Time model for Conv2D layer on machine learning accelerator

Modelling approach:

Time depends on Conv2D parameters x_{conv} , fit parameters Θ_{conv} , and clock frequency f_{clk} .

 $t_{\rm conv} = t_{\rm conv}(\boldsymbol{x}_{\rm conv}, \boldsymbol{\theta}_{\rm conv}, f_{\rm clk})$

Grey box model for clock cycles based on :

$$\begin{aligned} \mathsf{clks}_{\mathsf{conv}} = \mathsf{clks}_{\mathsf{init}} + \left\lceil \frac{W_{\mathsf{i}} - W_{\mathsf{w}} + 1}{16} \right\rceil (H_{\mathsf{i}} - H_{\mathsf{w}} + 1) \\ & \cdot (aW_{\mathsf{w}}H_{\mathsf{w}}C_{\mathsf{i}} + \mathsf{clks}_{\mathsf{wb}}) \left\lceil \frac{C_{\mathsf{o}}}{4} \right\rceil b \quad , \end{aligned}$$

Calculate actual time considering f_{clk} .

 $t_{\rm conv} = \frac{{\rm clks}_{\rm conv}}{f_{\rm clk}}$

Model vs. Measurement

- f_{clk}=400 MHz
- Total time for 100K loops of Conv2D layer
- Relative time error: < 9 %

Energy models

Simple model based on static and dynamic power

$$E_{\text{tot}} = E_{\text{dynamic}} + E_{\text{static}}$$
$$E_{\text{static}} = P_{\text{static}} \cdot t$$
$$E_{\text{dynamic}} = \sum_{actions} E_{\text{action}} \cdot N_{\text{action}}$$

$$E_{\text{dynamic,SRAM}} = E_{\text{read32}} \cdot N_{\text{read32}} + E_{\text{write32}} \cdot N_{\text{write32}}$$
$$E_{\text{dynamic,NoC}} = E_{\text{NoC-read}} \cdot N_{\text{NoC-read}}$$
$$E_{\text{dynamic,MLA}} = E_{\text{MLA-compute}} \cdot N_{\text{MLA-compute}}$$

- Action counts calculated based on accelerator operation
- Approach similar to Accelergy [Wu et el. 2019], but with explicit handling of static power

Breakdown of energy contributions (fitted model)

Comparison of energy model and measurements

- **PL 2:** VDD₀₄=0.6 V, f_{clk}=400 MHz
- **Energy** for 100K loops of Conv2D layer run on 8 PEs
- **Relative error** of model vs. Measurement: < 5 %

Code Example

```
1 from mla performance models.models import Conv2DModel
2 from mla performance models.config import Conv2DConfig
 3
4 # set model parameters
  conv2d model = Conv2DModel(
 5
           clks init=42,
 6
 7
           clks wb=16.0,
           a=1.6239,
 8
 9
           b=1.0,
           clk frequency=400e6,
10
           static power 04=1.579e-3,
11
12
           static power 06=0.746e-3,
           static power 08=0.576e-3,
13
           E noc read 128=20.11e-12,
14
15
           E compute clock 04=55.17e-12,
16
           E sram read 32=3.94e-12,
17
           E sram write 32=4.34e-12)
18
```

```
19 # Conv2D parameters
20 conv2d cfg = Conv2DConfig()
21 conv2d cfg.in width = 32
22 conv2d cfg.in height = 32
23 conv2d cfg.in channels = 1
24 conv2d cfg.filter width = 5
25 conv2d cfg.filter height = 5
26 conv2d cfg.stride x = 1
27 conv2d cfg.stride y = 1
28 conv2d cfg.out channels = 6
29
30 # predict time and energy
31 time = conv2d model.time(conv2d cfg)
32 energy = conv2d model.energy(conv2d cfg)
33
34 print("Time [s]:", time)
35 print("Energy [J]:", energy)
```

Console output:

Time [s]: 1.59523e-05 Energy [J]: 2.6800374230000005e-07

Power management concepts

for energy-optimal scheduling of DNNs on SpiNNaker2

Overall concept

Objective: Energy-optimal mapping of DNNs on SpiNNaker2

Mapping approach:

- Layers have to be split into many smaller parts:
 6 MB of largest Conv layer vs. 96 KB of SRAM per PE for input and output feature maps
- Speedup through data reuse, see [Kelber & Wu et al. 2020]

Dynamic power management:

- Two performance levels:
 - **PL 1 (**0.5 V, 320 MHz) for least energy
 - PL 2 (0.6 V, 400 MHz) for highest speed
- For each atomic task (small part of layer on MLA), choose PL
- Use performance models to predict time and energy

Taken from: https://neurohive.io/en/popular-networks/vgg16/

Example: VGG Conv-1-2 Layer run on SpiNNaker2

- Conv 1-2 Layer has to be split into 1024 parts:
 - 6 loops with 152 parts
 - 1 loop with 112 parts
- Two performance levels:
 - PL 1 (0.5 V, 320 MHz) for least energy
 - PL 2 (0.6 V, 400 MHz) for highest speed
- Predicted results:
 - PL 1 requires 11 % less energy
 - PL 2 is 20 % faster

Power management scenarios

Scenarios where switching performance levels is useful:

- **1. Speed:** DNN should be processed as fast as possible.
- **2. Energy:** DNN should be processed with least energy.

3. Limited time: Time for processing the DNN is limited, e.g., when images arrive at a certain frame rate.

4. Limited power: The power the chip can draw is limited, e.g., by the power supply unit.

Limited Time: single layer (VGG Conv 1-2)

Scenario:

- $T_{PL 2}$ < Time budget < $T_{PL 1}$
- Here: time budget is 0.27 ms
- Nr. of loops per PL is automatically tuned such that finish time is just smaller than budget
- Predicted energy saving: 7.4 %

Limited Time: all convolutional layers

Scenario:

- $T_{PL 2}$ < Time budget < $T_{PL 1}$
- Here: time budget is 3.3 ms
- Each layer processed in one PL, automatically tuned to finish just within time budget
- Predicted energy saving: 6.6 %

Summary and Outlook

Summary

Performance Models for SpiNNaker2 MLA

- Simple grey box models for time and energy
- Time model has relative error < 9 %
- Energy model has relative error < 5 %

Power management concepts

- Concept for power management in many-core hardware with two DVFS settings for DNN inference
- Approach transferable to other hardare systems
- Predicted energy savings: Up to 12 % possible for full network

0.631 0.633 0.587 0.603 MLA (model) 0.6 NoC (model) SRAM (model) 0.5 MLA (measured) 0.4 [] 0.3 0.3 NoC (measured) SRAM (measured) 0.281 0.270 0.214 0.206 0.2 0.1 0.0 lenet1 vgg_conv2d_1 resnet conv2d 3 mobnv2 0

Outlook

Performance models

- Obtain performance models for SpiNNaker2 chip
- Extend to other DNN layers and operations, e.g.,
 - MaxPool in ARM Core
 - Data transfer and alignment

Power management concepts

- Validate concepts for full networks on SpiNNaker2 chip
- Try more sophisticated concepts
- Integrate performance models into SpiNNaker2 DNN compiler (in development, based on Apache TVM)
 - → automatic selection of energy-optimal **mapping** AND **scheduling**

Scaling

• Scale models and power management to 48 node boards and 5 M Core SpiNNcloud (available 2nd half of 2023)

Stvm

References

- **[Cordts 2016]** M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth, and B. Schiele, "The Cityscapes Dataset for Semantic Urban Scene Understanding," CVPR 2016.
- [Hoeppner 2019] S. Höppner, B. Vogginger, Y. Yan, A. Dixius, S. Scholze, J. Partzsch, F. Neumärker, S. Hartmann, S. Schiefer, G. Ellguth, L. Cederstroem, L. A. Plana, J. Garside, S. Furber, and C. Mayr, "Dynamic power management for neuromorphic many-core systems," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 66, no. 8, pp. 2973–2986, 2019.
- **[Kelber & Wu et al 2020]** F. Kelber, B. Wu, B. Vogginger, J. Partzsch, C. Liu, M. Stolba, and C. Mayr, "Mapping deep neural networks on spinnaker2," in Proceedings of the Neuro-inspired Computational Elements Workshop, 2020, pp. 1–3. [Online]. Available: https://easychair.org/publications/preprint/JPPG
- [Wu et al. 2019] Y. N. Wu, J. S. Emer, and V. Sze, "Accelergy: An architecture-level energy estimation methodology for accelerator designs," in 2019 IEEE/ACM International Conference on Computer-Aided Design (IC-CAD). IEEE, 2019, pp. 1–8.

